Limit Roots of Lorentzian Coxeter Systems
نویسنده
چکیده
A reflection in a real vector space equipped with a positive definite symmetric bilinear form is any automorphism that sends some nonzero vector v to its negative and pointwise fixes its orthogonal complement, and a finite reflection group is a discrete group generated by such transformations. We note two important classes of groups which occur as finite reflection groups: for a 2-dimensional vector space, we recover precisely the finite dihedral groups as reflection groups, and permuting basis vectors in an n-dimensional vector space gives a way of viewing a symmetric group as reflection group. A Coxeter group is a generalization of a finite reflection group, whose have rich geometric and algebraic properties interact in surprising ways. Any finite rank Coxeter group W acts faithfully on a finite dimensional real vector space V . To each group is an associated symmetric bilinear form which it preserves, and the signature of the bilinear form contains valuable information about W ; if it has type (n,1), we call such a group Lorentzian, and there is a natural action of such a group on a hyperbolic space. Inspired by a conjecture of Dyer in 2011, Hohlweg, Labbé and Ripoll have studied the set of reflection vectors in Lorentzian Coxeter groups. We summarize their results here. The reflection vectors form an infinite discrete subset of V , but if we projectivize, PV contains limit points, which have the appearance of a fractal.
منابع مشابه
Lorentzian Coxeter Groups and Boyd-Maxwell Ball Packings
In the recent study of infinite root systems, fractal patterns of ball packings were observed while visualizing roots in affine space. In fact, the observed fractals are exactly the ball packings described by Boyd and Maxwell. This correspondence is a corollary of a more fundamental result: given a geometric representation of a Coxeter group in Lorentz space, the set of limit directions of weig...
متن کاملThe complex Lorentzian Leech lattice and the bimonster
We find 26 reflections in the automorphism group of the the Lorentzian Leech lattice L over Z[e2πi/3] that form the Coxeter diagram seen in the presentation of the bimonster. We prove that these 26 reflections generate the automorphism group of L. We find evidence that these reflections behave like the simple roots and the vector fixed by the diagram automorphisms behaves like the Weyl vector f...
متن کامل2 8 Ju n 20 06 The complex Lorentzian Leech lattice and the bimonster
We find 26 reflections in the automorphism group of the the Lorentzian Leech lattice L over Z[e2πi/3] that form the Coxeter diagram seen in the presentation of the bimonster. We prove that these 26 reflections generate the automorphism group of L. We find evidence that these reflections behave like the simple roots and the vector fixed by the diagram automorphisms behaves like the Weyl vector f...
متن کاملEven More Infinite Ball Packings from Lorentzian Coxeter Systems
Boyd (1974) proposed a class of infinite ball packings that are generated by inversions. Later, Maxwell (1983) interpreted Boyd’s construction in terms of root systems in Lorentz spaces. In particular, he showed that the space-like weight vectors correspond to a ball packing if and only if the associated Coxeter graph is of “level 2”. In Maxwell’s work, the simple roots form a basis of the repr...
متن کامل2 9 Ju n 20 06 Reflection group of the quaternionic Lorentzian Leech lattice
We study a second example of the phenomenon studied in the article “The complex Lorentzian Leech lattice and the bimonster”. We find 14 roots in the automorphism group of the the quaternionic Lorentzian Leech lattice L that form the Coxeter diagram given by the incidence graph of projective plane over F2. We prove that the reflections in these 14 roots generate the automorphism group of L. The ...
متن کامل